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A general solution of the three-dimensional Stokes equations is developed for the 
viscous flow past a square array of circular cylindrical fibres confined between two 
parallel walls. This doubly periodic solution, which is an extension of the theory 
developed by Lee & Fung (1969) for flow around a single fibre, successfully describes 
the transition in behaviour from the Hele-Shaw potential flow limit (aspect ratio 
B @ 1 )  to the viscous two-dimensional limiting case (B  1, Sangani & Acrivos 1982) 
for the hydrodynamic interaction between the fibres. These results are also compared 
with the solution of the Brinkman equation for the flow through a porous medium 
in a channel. This comparison shows that the Brinkman approximation is very good 
when B > 5 ,  but breaks down when B < O(1) .  A new interpolation formula is 
proposed for this last regime. Numerical results for the detailed velocity profiles, the 
drag coefficient f, and the Darcy permeability K ,  are presented. It is shown that the 
velocity component perpendicular to  the parallel walls is only significant within the 
viscous layers surrounding the fibres, whose thickness is of the order of half the 
channel height B .  One finds that when the aspect ratio B > 5 ,  the neglect of the 
vertical velocity component v, can lead to large errors in the satisfaction of the no- 
slip boundary conditions on the surfaces of the fibres and large deviations from the 
approximate solution in Lee (1969), in which v, and the normal pressure field are 
neglected. The numerical results show that the drag coefficient of the fibrous bed 
increases dramatically when the open gap between adjacent fibres A' becomes 
smaller than B .  The predictions of the new theory are used to examine the possibility 
that a cross-bridging slender fibre matrix can exist in the intercellular cleft of 
capillary endothelium as proposed by Curry & Michel (1980). 

1. Introduction 
The problem of viscous flow in a closely spaced parallel-walled channel with 

cylindrical obstacles has attracted considerable attention since Hele-Shaw in 1898 
first observed that the streamlines for this flow accurately reproduced the lines of 
force around a metal cylinder in a dielectric medium in a magnetic field. This 
behaviour was then explained by Stokes who mathematically showed that if the 
spacing between the walls 2B' was small compared to the diameter 2a of the cylinder, 
the vertical component of the velocity could be neglected and the governing equation 
for the viscous flow in planes parallel to the boundaries was a potential flow equation. 
This equation could be satisfied everywhere except in a thin boundary-layer region 
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near the cylinder surface where the no-slip conditions could not be satisfied. Using 
perturbation thcory and matched asymptotic expansions Thompson (1968) was able 
to show for B = B / a  < 1 there was a small layer near the cylinder of thickness O ( B )  
where the vertical velocity did not vanish and the neglected viscous terms were 
required to satisfy the boundary conditions. A major advance in the analysis of this 
problem was then developed by Lee & Fung (1969) who wished to treat the more 
complicated problem where the aspect ratio of the cylinders B was of O(1).  The 
motivation for this study was the flow of blood around the septal posts in pulmonary 
alveoli where the aspect ratio of the posts was typically 2. An accurate infinite series 
solution to the three-dimensional Stokes equation for the flow past a single circular 
cylinder was developed and numerical results based on a truncated series were 
calculated for aspect ratios B d 5 .  An approximate two-term solution was also 
presented which neglected the vertical velocity component and approximately 
satisfied the no-slip conditions on the cylinder provided B < 1. However, for B = 5 
the error in the no-slip condition on the cylinder surface at the midplane for the two- 
term approximation was nearly 50 %. This two-term approximation was then 
applied by Lee (1969) for a two-dimensional periodic array of circular cylinders as a 
model for the septal posts in alveolar sheet flow. The two-term approximate theory 
in Lee (1969) also broke down if the spacing between the cylinder surfaces A' was 
comparable with or smaller than the channkl height 2B'. 

In  the present study a more general analysis of the channel flow problem for the 
doubly periodic array of cylinders is undertaken which expands the solution 
approach developed in Lee & Fung (1969) and Lee (1969). In  particular, we are 
interested in the flow in a parallel-walled channel in which the aspect ratio of the 
cylinders covers the entire range from B < 1 to B 9 1 and solidity ratios where 
A/2B < O(1) .  In  the limit where A / =  < 1 this theory should approach the large 
body of solutions for the two-dimensional viscous flow past a doubly periodic 
array of infinite cylinders (Kuwabara 1959; Happel 1959; Spielman & Goren 1968 ; 
Sangani & Acrivos 1982 ; Drummond & Tahir 1984). The principal simplification in 
Lee & Fung (1969) for the flow past a single cylinder is that the outer potential flow 
is a uniform Poiseuille flow at  infinity. In this limit the upstream flow for the velocity 
potential in planes parallel to the boundaries has a simple sine dependence in 
cylindrical coordinates. For an array of cylinders, an infinite series of higher-order 
harmonic functions in 0 are required and solutions which accurately satisfy the no- 
slip conditions for all three velocity components on the surface of the cylinders are 
sought. We believe that the new solutions developed herein are of fundamental 
interest to fluid mechanicians because they describe the transition in behaviour from 
the irrotational Hele-Shaw potential flow limit to the two-dimensional limiting 
behaviour for B 9 1 described above. This change in behaviour, which is related to 
the thickness of the viscous layers wherein the flow adjusts to  satisfy the no-slip 
conditions on the surfaces of the fibres, arises strictly from the geometric lengthscales 
in the problem, and should not be confused with the more common viscous-inviscid 
interaction associated with traditional boundary layers that scale with the Reynolds 
number. 

Low-Reynolds-number flows in pores or channels filled with a porous matrix of 
fibrous material have frequently been approximated using a Brinkman equation 
(Brinkman 1947; Bird, Stewart & Lightfoot 1960; Neale & Nader 1974). A summary 
of these applications is given in Ethier & Kamm (1989), who have used this 
Brinkman approach to model flow through gel-filled channels. In the Brinkman 
equation the effect of the fibre matrix is represented by a distributed body force 
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based on Darcy’s law for an infinite medium. It is well recognized that the 
applicability of the equation requires that the microscopic internal lengthscale of the 
medium (spacing between fibres) be small compared to the characteristic distance 
over which the macroscopic average velocity and pressure varies. Larson & Higdon 
(1986) using detailed numerical calculations have shown that the Brinkman 
approach is a good approximation for shear flow over an isotropic fibre matrix. There 
is to our knowledge no previous model for examining the validity and limitations of 
the Brinkman equation for approximating bounded porous-media flows. In 
particular, one wishes to study the behaviour of the Brinkman equation as the fibre 
spacing is varied relative to the characteristic macroscopic length, the channel 
height. We shall show that in the dilute fibre limit the two-term approximation used 
in Lee (1969) provides a more accurate description of the drag due to the fibres and 
channel walls than the Brinkman equation. It is thus possible to develop a new 
highly accurate interpolation formula for the effective viscosity of the channel using 
a curve fit which asymptotically approaches the analytic limiting expressions of Lee 
and Sangani & Acrivos. This formula is superior to Brinkman’s approximation for a 
periodic fibre array in which B < O(1).  

The motivation for the present study derives from a recent paper by Tsay, 
Weinbaum & Pfeffer (1989) in which a new three-dimensional model has been 
proposed for capillary filtration through the clefts between endothelial cells in 
continuous capillaries. These clefts are believed to be the principal pathway for the 
transcapillary movement of water and small solutes (Curry 1984, 1986 ; Michel 1985). 
The intercellular clefts between adjacent membranes of vascular endothelial cells are 
narrow channels of typically 20-25 nm gap height and depth (length along channel 
midplane) which can vary from 400 nm for capillaries to 2000nm for arterial 
endothelium. Except for localized constrictions associated with intramembranous 
junction protein arrays, the gap height between membranes is of remarkable 
uniformity. A molecular-level theory which attempts to relate the intramembranous 
protein structure to the spacing of the membranes is developed in Weinbaum (1980). 
The inability of a simple parallel or constricted channel geometry to explain the 
measured water and solute permeability data of capillaries in various tissues has led 
Curry & Michel (1980) to propose that the uniform portion of the cleft is filled with 
a proteoglycan matrix of cross-bridging fibres of approximately 0.6 nm radius. 
Rough estimates of the filtration resistance of this fibre matrix in Tsay et al. (1989) 
based on the two-term asymptotic solution in Lee (1969) have suggested that the 
Carman-Kozeny equation that had previously been used to describe the flow 
through the cross-bridging matrix may be totally inappropriate since it describes an 
infinite matrix and neglects the hydrodynamic interaction between the fibres and the 
channel walls, which is the dominant effect in the dilute fibre limit. Michel (1985) and 
Curry (1986) have also suggested that the fibres, as opposed to the junctional 
constrictions, serve as the primary molecular sieve for larger solute molecules. The 
aspect ratio B of these fibres based on the dimensions cited is 18.3 ( B  = 22 nm, a = 
0.6 nm). Estimates of the typical spacing A’ between fibres for them to serve as the 
molecular filter lie in the range of 6 to  10 nm. Thus the values of both B and A / B  lic 
considerably outside the range of validity of the approximate theory in Lee (1969) 
for a cross-bridging periodic fibre array. The periodic fibre structure is also of interest 
in another context. Silberberg (1987) and Firth, Bauman & Sibley (1983) have 
proposed, based on electron microscopic studies, that  the uniformity of spacing may 
be due to a small volume fraction of cross-bridging proteins that, span the channel. 
The aspect ratio B of these larger cross-bridging molecules is 2-3 and thus similar to 
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the septa1 posts in lung alveoli. Results will be presented herein to examine the 
feasibility of both these cross-bridging molecular networks. 

This paper is presented in five sections. The general formulation of the problem is 
presented in $2.  Section 3 describes the procedure for obtaining accurate solutions for 
the flow through a doubly periodic fibre array. The solution for the effective viscosity 
is also given. The principal results are presented in $4 where the present results are 
compared with various approximate solutions. Finally $ 5  discusses the implications 
of these results for the biological problem that motivated this study. 

2. Formulation 
For flow through a fibre matrix confined bctwecn two parallcl platcs, Fung & 

Sobin (1969) have defined the following ‘macroscopic ’ relationship between the 
pressure gradient and the fluid velocity : 

(1) 

where the prime indicates dimensional coordinates, and the overbar denotes an 
average value over a region which is small compared with the macroscopic 
lengthscale, yet is large enough to level off the microscopic heterogeneity. For a 
periodic fibre arrangement, the average is taken over one periodic unit. The effective 
viscosity peCc equals pf, where f represents the influence of the fibres. In general f is 
a function of the configuration of the fibre array, the fibre volume fraction S and the 
aspect ratio B.  To determine f one must first obtain a solution for the local flow field 
in the periodic unit. The contribution to f arises from two sources, the resistance of 
the fibres and the increased resistance of the wall due to the velocity disturbance 
generated by the fibre-wall interaction. 

It is convenient to formulate the problem in terms of dimensionless coordinates. 
In the following, all the lengths are scaled relative to the fibre radius a.  The fluid 
velocity V is made dimensionless with respect to the superficial velocity 0 and the 
fluid pressure P with respect to a characteristic viscous stress pl7la. A idealized 
configuration of the intercellular cross-bridging fibre array is shown in figure 1. This 
structure is similar to the internal geometry of the pulmonary alveolar septa 
proposed by Lee (1969). Let (x, y ,  z )  be a set of Cartesian coordinates and ( r ,  8, z )  be 
a set of cylindrical coordinates. These two sets of coordinates have the same origin. 
Let (a,p) designate a particular fibre in the periodic array. The centre of the apth 
fibre is located a t  Z,,, where Z is a complex plane with 

- 
V’P  = - (3pu, , , /B2)  u, 

Z = x+iy = reis and Z,, = 2aa,+2/3is2 = RaBexp(ill’,,). 

Here 2 W ,  = 0,-iiw,, is, = w,+iw, and w1 = w2 = tW 

for a square array. (rap, 8,,, z )  are the local coordinates corresponding to the apth 
fibre. 

For an incompressible creeping flow, the non-dimensionalized continuity equation 
and Stokes equation are 

v. v =  0, (2) 

v2 v = VP. (3) 

V =  0 at rap = 1, (4) 
V = O  at z = + B ,  ( 5 )  

The fluid velocity V must satisfy the no-slip conditions on the surfaces of the fibres 
and the channel walls : 
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FIGURE 1.  A top view and a side view of the idealized periodic configuration for the cross-bridging 
fibre array in an intercellular channel. All the lengths are scaled relative to the fibre radius a. 

and the total flux Q is given by 

Using (2 )  and (3), one can show that P is a harmonic function and the components 
of V are biharmonic functions. 

3. Method of solution 
3.1. General solution for Stokes flow confined between two flat plates 

A general solution of (2 )  and ( 3 )  in cylindrical coordinates which satisfies the no-slip 
conditions on the two channel walls is given by Lee & Fung (1969) as 

where 

a, and A, are eigenvalues which satisfy the following equations : 

sin 2an B = 2a, B,  
7t 

A n = ( 2 n + i ) - ,  n = 0 , 1 , 2  ,.... 
2B 
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Here all the eigenvalues a, are complex except a, = 0. Approximate values for a, are 
given by the equation 

2a,B = ( 2 n + a ) z & i l n [ ( 4 n f l ) ~ ] ,  n = 1 ,2 ,3 ,  ... . 

The eigenfunctions q5,, #,, q5,, and 3, satisfy the following differential equations: 

where 

E2@, = 0, E2$, = 0, 

E2q5,-aiq5n = 0, 

E2qn-Ah2,$, = 0,  

n = 1,2 ,  ..., 

n = 0 , 1 , 2 ,  ..., 

The fundamental solutions given by (7)-( 10) are a superposition of three 
contributions : the terms containing q50 and @, are the zero-eigenvalue biharmonic 
solutions for a, = 0, which correspond to the irrotational Hele-Shaw flow ; the terms 
containing 4, with n 2 1 are biharmonic solutions, which describe the vertical 
component of the velocity in the z-direction induced by the motion of the vorticity 
layer past thc fibres insidc thc channcl ; thc tcrms containing 3, arc the rotational 
harmonic solutions, which are required to satisfy the no-slip boundary condition on 
the surface of each fibre. The 3, harmonic solutions do not contribute to the pressure 
field, whereas the q5, solutions do not contribute to  the z-component of the vorticity. 

The solution of (14)-(16) can be obtained by separation of variables. These 
separable solutions are 

(17) 
i 

q5,, @, : r- ,  cos m8, r-, sin m0, rm cos mt', rm sin m8, 

q5, : Km(a,  r )  cosnz8, K,(an r )  sin mt', I,(a, r )  cosm8, Im(an r )  sin m8, 

3, : K,(h, r )  cosmo, Km(h,  r )  sin m8, I,& r )  cosm8, Im(An r )  sin me, 

where I, and K ,  are modified Bessel functions of the first and second kind of order 
m. The functions q5,, @o, q5,, and $n are linear combinations of these separable 
solutions. For flow around a single fibre, Lee & Pung (1969) showed that the m = 1 
terms are sufficient to provide a complete solution. However, for flow through a fibre 
array, the problem is considerably more complicated since an infinite series of terms 
with m > 1 are required in the solutions for q50, @,, q5, and 3, to describe the 
interaction between the fibres. 

3.2. Stokes flow past a square array of cylindrical jibres inside a channel 
Some of the separable solutions in (17) can be eliminated by applying the boundary 
conditions at  r --f 03. Since the flow field is bounded everywhere, the terms including 
rm (m > l ) ,  Im(an r ) ,  and l m ( A n  r )  for (m 2 0) must be excluded. The fundamental 
solutions for q5, and $, thus reduce to the more limited set 

q5, : Km(an ra8) cos mBaB, K,(a, rap) sin meaB, (18) 

3, : K,(h, rap) cosmOaB, Km(A, rap) sinmOap. (19) 

The doubly periodic functions for #, and 3, can be obtained by summing the 
functions in (18) and (19) over all possible a,P. Similarly, one could construct 
the quasi-doubly periodic functions for q5, and @, by summing terms involving 
rPrn (m 2 - 1 )  over a,P. However, since q50 and II., are harmonic functions 



Vi'iscous $ow in a channel with periodic cross-bridging *fibres 131 

corresponding to  the irrotational Hele-Shaw flow, a simpler alternative is to take 
advantage of the periodicity properties of the Weierstrass zeta function [ ( Z )  as 
proposed earlier in Lee (1969). 

According to the Cauchy-Reimann theorem, one knows that there is a function @ 
of the complex variable Z which satisfies 

@(Z) = q50+i+o. (20) 

The function @(Z), which is an integral of an elliptic function for a doubly periodic 
fibre array, can be expressed as a linear combination of the Weierstrass zeta function 
g(Z) and its derivatives (Whittaker & Watson 1944; Lee 1969): 

where 

The symbol 
the origin a = ,8 = 0. The function [(Z) is a quasi-periodic function: 

is used to  denote the summation over all a, p with the exception of 

(24) 

The derivatives of { ( Z )  are doubly periodic functions with periods 213, and 202, where 
and qlij2-q2ijl = +Ti. Using symmetry conditions a t  the x- and y-axes, terms 

Kzm(h,r,B) sin2mOaB in (18), (19), and (21) must vanish. This leads to  the following 
expressions for @(Z), 4, and 3,: 

[(Z + 2a4, + 2,8ij2) = C(Z)  + 2aql + 2/3yZ. 

involving { (2m-1) , Kzm(a, rap) cos 2mBaB, Km(a, rap) sin meaB, K,(A, rap) cos meaB, 

Substituting (25) into (7)-(lo), one has a general solution for a doubly periodic flow 
field. 

In  order to apply the no-slip conditions on the surface of the fibres we need to 
transform the (rap, Bap, z )  coordinates in (25)  into a common coordinate system 
( r ,  8, z ) .  The Weierstrass zeta function and its derivatives are transformed according 
to the binomial theorem 

The transformation of the modified Bessel functions can be performed using Graf s 
generalization of Neumann's addition theorem (Watson 1980) : 
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Both of these transformations converge when 121 < IZa,J. After the transformation, 
(25) becomes 

where A, ,  = 0, 

+Kzm-2p(anRap) COB ( 2 m - 2 ~ )  $a/J, 

and Gap =4 for fibres not located on the x- or y-axis 

= 2 for fibres located on the x- or y-axis. 

The notation Z&I,p denotes a summation over all possible fibre positions in the first 
quadrant, except the one at the origin. Notice that according to the formula for A m p ,  

where S2 is the non-absolutely-convergent term evaluated by Rayleigh (1892) and 
Perrins, McKenzie & McPhedran (1979). Since the terms involving A,,  cancel out 
when 4, is transformed from (25) into (as), we have set A,, = 0. Rayleigh's 
convergence difficulties arose from an incorrect assessment of the macroscopic 
boundary integral, which has been discussed in O'Brien (1979). 

By substituting (28) back into (7)-(10) and apply boundary conditions (4) and (6), 
one should be able to obtain the unknown coefficients in (28). However, because the 
set of solutions in (7)-( 10) involves three different sets of independent functions of z ,  
the no-slip condition on the fibre surface cannot be applied in a straightforward 
manner. One could attempt to satisfy the no-slip conditions using numerical 
boundary collocation methods as described in Weinbaum, Ganatos & Yan (1990). 
However, since this problem is three-dimensional, this would require many grid 
points and there is no guarantee of convergence. One alternative way which does 
guarantee convergence is to  expand the z-dependence in each velocity component in 
terms of a complete set of orthogonal functions. For the v, and vo velocity 
components, the COSA,Z form a complete set of orthogonal functions. For the v, 
velocity component, we follow the procedure of Lee & Fung (1969) for the single fibre 
case and introduce the function Yn, 

(29) 
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where v ,  are the positive eigenvalues obtained from the following equation : 

tan v ,  B = tanh v, B. (30) 

Approximate values of vn are given by (n+a)  ( x / B ) ,  n = 1,2,3,  ... . The function Y, 
has the proper orthogonality properties because Y,( + B )  = dY,( fB)/dz = 0 and it is 
an odd function. The various functions of z appearing in (7)-(10) can now be 
expressed as infinite series in cosA,z or Yn(z), see Appendix. 

Using the foregoing results, one can express each velocity component in (8)-( 10) 
in the form of a doubly infinite series: 

I w w  

u = C C ~ m , ( r ) c o s ( 2 m - ~ ) ~ c o s ~ , z ,  
12-0 m=l  

m m  
v = C C ~ m n ( r ) s i n ( 2 m - ~ ) ~ c o s h , z ,  

I n-0 m-1 

J /  Ln-1 m-1 

The expressions for urn,, vmn and wmn are given in the Appendix. 

3.3. Numerical solution for  unknown coeficients 
I n  order to solve for the unknown coefficients in the expressions for Om,, Vmn and 
vmn in (31), we first truncate the doubly infinite series a t  n = N and m = M .  The 
truncated series is then required to satisfy the no-slip conditions on the surface of the 
fibre at the origin. Owing to  the periodicity, this automatically satisfies the no-slip 
condition on all the other fibres. By applying the orthogonality of the functions Y,, 
sin mB, and cos mB, we obtain 

I 

1 I (2m-1) % 
-Re[ C C ( 1 3 ~ ~ - D , ~ ~ ) d ~ ~  = -arnl (m = 1,M, n = 0,N) 

1, 3-1 aj” p-1  

\ (m = 1,M, n = 1,N). 

Here I , ,  e,, and f , ,  are given in (A2)  and DKa,,, DIu,,, DKA,, and DIA,, are 
defined following (A 5). The coefficients A m p ,  Bnmp and D,mp are given in (28) where 
the summation C’& is performed for a truncated prescribed value of Rap, The 
eigenvalues A, are obtained from (13), whereas the eigenvalues a, and v, are 
evaluated numerically from (12) and (30) using Muller’s method (Conte & Boor 1980). 

Equation (32) constitutes (3N+2)M equations, which can be solved for the 
(3N+2)M unknowns: b,, c,, and djm (m = 1,M, n = O,N, j = 1,N). The d,, are 
complex so each djm represents two unknowns, a real and an imaginary part. Once 
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( 3 2 )  is solved by matrix algebra, all the unknowns except b, in (28) are known. b, is 
determined by applying the total flux condition in (6). This yields 

where S = 2n/ W2 and g1 = i 2 ~ ~ ( 7 ~ -  ql)/n. 

3.4. Drag coeficient 

From ( l ) ,  the drag coefficient f is given by 

Here the average pressure gradient T / d x  can be calculated from (7) .  Since the q5n for 
n > 0 are doubly periodic functions. only the term involving q5, will contJribute to the 
average pressure gradient. From the definition of aP/ax. 

= -$( 1 - b, S R e  [g2]) 6 ,  (35) 
where ( ) denotes an average over the z-direction and g2 = 2w2(yl+q2)/n. For a 
square array, g1 = g2 = 1 (Southard 1964). Substituting (33) into (35), we have 

where it is seen that f depends only on the lowest-order coefficient b,. The value of 
b,, however. depends on the solution for all the coefficients in the truncated series. 

f = ( 1 - - b 1 s ) / ( 1 + b 1 f J ) ,  (36) 

4. Results 
I n  this section, we shall first examine the convergence of the solutions and then 

present the results for the detailed velocity profiles. the drag coefficient, and the 
Darcy permeability as a function of aspect ratio B and fibre density S .  The fluid 
velocity is calculated from (8)-(10) and the drag coefficient f is obtained from (36). 
A Brinkman approximation and an asymptotic formula are also given. 

4.1. Convergence of the solutions 

Extensive numerical tests have been conducted for the convergence of the solution 
asM, N ,  and NposT (number of fibres in the quarter-plane) are increased. The criteria 
for convergence are : (a)  the solution for the friction factor f converges to the desired 
number of digits. and ( b )  the no-slip conditions for IvTI, 1 ~ ~ 1 ,  and 1v,1 on the fibre surface 
do not exceed a prescribed error tolerance. The values of Bnmp and Dnmp in (28)  are 
functions of H and S whereas A,, is a function of S only. To test the effect of N,,,, 
on the convergence off,  the values off are calculated for M = 2 and N = 1.  These 
values of N and M were chosen sincc the values of A,,, B,,,. and Dnmp in (28) 
converge faster as NposT is increased for higher n, m,  and p .  Results not shown 
herein indicate that the solution for f converges much faster a t  the lower fibre 
density; e.g. for B = 20 and S = 0.02, one is able to assure five-digit convergence 
with NposT = 200, while for S = 0.2, one can obtain only three-digit convergence 
with NposT = 2000. The results also show that the value of NposT required is a 
sensitive function of the aspect ratio B and that for B < 5. NposT < 200 will be 
satisfactory for all S < 0.2. 

The convergence tests as M and N are increased are shown in tables 1 and 2. Table 
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1 (a ,  b )  presents the values of I u , ~ ,  Iv ,~ ,  and (v,( on the fibre surfaces a t  z = $ and 8 = 
ax and thus the violation of thc no-slip condition a t  this point. Table 2 shows the 
convergence for the friction factor f .  These results are compared with Lee’s (1969) 
two-term approximate solutions for B = 1, 5 and 20 and S = 0.2 and 0.02. Note 
1vJ = 0 in Lee’s two-term approximation since all the $n terms in (7)-(10) are 
neglected and there is neither a normal pressure gradient nor vertical velocity 
component. The interesting observation is that although Lee’s solution provides 
reasonable agreement for f even when the aspect ratio is as large as 20 (error < 20 % 
for S < 0.2), the no-slip conditions on thc fibre surface are severely violated for 
H 2 5. For instance, as shown in table 1 ( a )  for S = 0.02, the magnitude of v, and v, 
on the fibre surface in Lee’s approximate solution can exceed 0 .370  and 5 . 1 0  for 
R = 5 and 20 respectively and the results for S = 0.2 are worse. The error in Lcc’s 
two-term approximation for the entire velocity profile will be shown in figures 2 and 
3. Also shown in tables 1 and 2 are the effect of B and S on the rate of convergence. 
The results indicate that the n-series truncation N is mainly determined by the aspect 
ratio B. As observed in table 2, in ordcr to  obtain four-digit convergence for f at  S 
= 0.02, N increases from 2, 4 to 10 for B = 1, 5 and 20 respectively. The m-series 
truncation M is only required a t  the larger value of S = 0.2. Four-digit convergence 
for S = 0.02 is achieved for f with M = 1. Additional results, not presented herein, 
indicate that for B 6 20 solutions for f with at least four-digit accuracy can be 
achieved for S 6 0.5 with M = 4. 

4.2. The velocity field 
The comparisons between the velocity profiles obtained by the present solution and 
the profiles predicted by Lee’s (1969) two-term approximation are shown in figures 
2 and 3. In figure 2 the velocity profiles along the radial coordinate a t  z = 13, 0 = 

ax arc plotted for S = 0.02 and B = 5. This figure shows clearly that Lee’s 
approximation (the dotted curves) provides good results for v, and vo for the far field 
but is a poor approximation for the boundary layer ( r la  < B )  surrounding the fibre 
surface. 

The v,, v, and v, velocity profiles in the z-direction a t  four different radial positions, 
r / a  - 1 = 0, QA, i d ,  +A,  along the 0 = :T coordinate are plotted in figure 3. The values 
of S and R are the same as in figure 2. The solid lines in figure 3 represent the velocity 
profiles predicted by the present truncated series solution with M = 2, N = 15 and 
NpOST = 1000. The velocity on the fibre surface is smaller than 0.00050 everywhere 
and, therefore, would not bc visible using the velocity scale in this figure. The results 
show that the velocity profiles for v, and vg in the z-direction are nearly parabolic. 
The profile for u, is determined by a linear combination of Yn(z) functions in (29). 
These functions require that v, satisfy both the no-slip condition, vz( +B) = 0, and 
the zero-gradient condition, av,( f B ) / a z  = 0. Since v, and v, vanish on the channel 
walls, one can show from the continuity equation that av,( fB)/az = 0. The dashed 
curves are the v,. and vg profiles obtained from Lee’s (1969) two-term solution. The 
v, velocity component is zero in Lee’s approximation. The results indicate a 
maximum error a t  z z 0.74B. The two-term approximation introduced in Lee & 
Fung (1969) and used in Lee (1969) assumes that 1 -z2/B2 x 32 cos (xz/2B)/n3 in 
satisfying the no-slip conditions on the fibre surface. As noted in Lee & Fung (1969), 
this is a reasonable approximation only for B < 1. For larger values of B the no-slip 
Condition is severely violated locally ; however, as the results for the dashed curves 
labelled 1 indicate, the average value of v, and v, is very roughly satisficd a t  the fibre 
surface. Since f is a global property, this explains why Lee’s two-term approximation 
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- Present results 
- .... Lee’s approximation (1969) 

0.5 
U 

~ 

u 
0 -  

-0.5 

-1.0 

- 1.5 

- 

- 

- 

s = 0.02 s = 0.2 

N M = l  M = 2  M = 3  M = l  M = 2  M = 3  

Aspect ratio R = 20 
Lee (1969) 11.632 11.634 11.634 507.56 533.62 533.61 

2 10.876 10.878 10.878 442.81 465.27 465.26 
4 10.871 10.872 10.872 433.45 454.96 454.95 
6 10.869 10.871 10.871 429.45 448.59 448.47 

10 10.897 10.898 10.898 436.28 458.31 458.31 
15 10.893 10.895 432.83 454.56 

Aspect ratio B = 5 
Lee 1.7972 1.7973 1.7973 33.470 35.068 35.068 

2 1.7759 1.7760 1.7760 30.671 32.041 32.041 
4 1.7763 1.7764 1.7764 30.595 31.959 31.960 
6 1.7763 1.7764 1.7764 30.550 31.908 31.908 

10 1.7768 1.7768 1.7768 30.703 32.084 32.084 
15 1.7768 1.7768 30.696 32.075 

Aspect ratio B = 1 
Lee 1.1113 1.1113 1.1113 3.0829 3.1235 3.1237 

2 1.1102 1.1102 1.1102 3.0460 3.0843 3.0843 
4 1.1103 1.1103 1.1103 3.0472 3.0855 3.0855 
6 1.1103 1.1103 1.1103 3.0472 3.0856 3.0856 

10 1.1103 1.1103 1.1103 3.0477 3.0861 3.0861 
15 1.1103 1.1103 3.0477 3.0861 

TABLE 2. Convergence tests for friction factor f as LV and M are increased. NpoST = 1000 for 
= 0.02. LVpy,,,, = 4000 for S = 0.2 

provides reasonable results for f for values of B for which the no-slip condition is very 
poorly satisfied pointwise. We shall take advantage of this property of orthogonal 
functions in developing an approximate formula for f later in the paper. 

The change in the v,, vg and v, velocity profiles surrounding the fibres in the plane 
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FIGURE 3. v,, va and v, velocity profiles in the z-direction at  four different radial positions, 
( r - a ) / a  = 0 (curve l ) ,  SA (2), $A (3) and ;A (4) on line 0 = joining fibre centres. A is the non- 
dimensional gap spacing between fibres. The dashed curves are the v, and va profiles obtained from 
Lee’s (1969) two-term solution in which v, = 0. The solid curves are predicted by the present 
solution. S = 0.02 and B = 5. 

.... 5 

I . . . . . . . ~ . ~ . * . I  
0 1 2 3 4 5 6 I 

r l a  

FIGURE 4. Solutions for v,, vg, vz velocity profiles along the 0 = i z  coordinate a t  z = L@ for fibres 
wit,h varying aspect ratio B. The fibre volume fraction S = 0.02. Note that the magnitude of vz is 
enlarged by a factor of 10. 

z = A$ along 0 = in as B is increased, is shown in figure 4. Similar to the velocity 
profiles in Lee & Fung (1969) for a single fibre, the results reveal that v, is significant 
only within a distance of the order of B from the fibre surface and its amplitude is 
one order of magnitude smaller than v, and vg. The region where v, is significant 
coincides with the viscous layer where the v, and vg velocity components adjust to the 
no-slip conditions a t  the fibre surface. Outside this layer, the vertical velocity 
component is negligible and the fluid behaves like a two-dimensional Hele-Shaw flow. 
Later in this paper we shall show that the dimensionless thickness of this viscous 
layer 8, which is of O(B) ,  compared to the width of the open gap A between adjacent 
fibres is the critical condition for determining when the drag force due to the fibres 
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- - \ \  

j - \ \  

+ 
\ \ \ - - - +  

FIGURE 5 .  The velocity fields showing the viscous layers around the fibres a t  the centreplane 
( z  = 0) for S = 0.02 and (a )  aspect ratio B = 0.5 and-(b) B = 10. The bar represents the magnitude 
of the average velocity 0. 

M 

fi 

6.1 1 .o 10 
A / B  

FIGURE 6. The drag coefficient f us. the ratio of gap spacing to channel half-height A / B  for four 
different aspect ratios B .  

will cause the channel resistance to sharply increase. Figure 4 also shows that the 
magnitude of v, decreases as the aspect ratio B decreases. This suggests that when S 
is fixed, Lee’s (1969) two-term approximation will be approached provided B is 
small enough. Furthermore, in the limit S + 0, i.e. A % 2B, the flow will approach the 
solution in Lee & Fung (1969) for a single fibre. Similar to the behaviour cxhibitcd 
by the v, profiles in figure 3, where av,/az = 0 on the two channel walls, one can show 
that v, not only satisfies v, = 0, but av,/ar must also vanish on the fibre surfaces. The 
profiles in figure 4 exhibit this behaviour as r / a  + 1. 

I n  figure 5 ( a ,  b ) ,  the velocity fields for B = 0.5 and 10 with the length of the 
velocity vector scaled to reflect IuI are plotted. The results are presented for the 
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A 
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lo-’ 

10 
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lo-’ 1 

S 

FIGURE 7. Tho Darcy permeability K ,  plotted as a function of the fibre volume fraction S 
(bottom) and the dimensionless gap spacing d.(top) for fibres of various aspect ratio B .  

channel flow with S = 0.02 ( A  = 10.53) a t  the centreplane ( z  = 0). One can clearly see 
the viscous layers surrounding the fibre surfaces. The viscous layers for B = 0.5 do 
not overlap and their thickness is much smaller than that for B = 10 a t  the same 
value of S. 

4.3. The drag coeficient f and Darcy permeability K ,  
A clearer insight into the mechanism which causes f to  increase as B and S are 
increased is shown in figure 6. In this figure the drag coefficient f is plotted as a 
function of the ratio of the dimensionless gap spacing A to the dimensionless channel 
half-height B for four different aspect ratios, i.e. B = 0.5, 1, 5 and 20. This figure 
reveals that  regardless of the value of B, the value off starts to increase dramatically 
when the open gap between adjacent fibres becomes smaller than the scale of B. As 
shown in figure 4, the thickness of the viscous layer around the fibre surface is of 
order B. This strongly suggests that the sudden increase off when A/B < O(1) is 
caused by the overlapping of the viscous layers. 

The definition of the effective viscosity peff given in (1) is based on a channel flow. 
This definition for peff is not useful in describing the resistance of an infinitely long 
two-dimensional fibre array. In  order to compare the transport properties obtained 
from two- and three-dimensional theories, we apply the definition for the Darcy 
permeability K ,  as follows : 

K ,  = - p U / v ” .  (37) 
For a channel flow, K ,  = B 2 / 3  f, whereas for two-dimensional flow through a fibre 
array of infinite length, K ,  = W2/2f,’,, where f;,, = F / p a  and F is the drag force 
exerted by the fluid on a single fibre per unit fibre length. Therefore, an equivalent 
drag coefficient f2 , ,  for a two-dimensional flow is defined as the following : 

Here fiD is a function of S and B while f&, is a function of S only. 
In figure 7, the Darcy permeability K ,  is plotted against solid fraction S (bottom) 

and open gap A (top) for fibres of increasing aspect ratio B. The upper solid line 
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10-2 10-1 1 10 102 
A 

FIGURE 8. The results of curve fitting using equation (41) for the two-dimensional drag coefficient 
f;, (dashed curve). The solid curve represents the rigorous solution obtained by Sangani & Acrivos 
(1982). 

(B = 00)  is taken from Sangani & Acrivos (1982) for the two-dimensional limiting 
case. The results show that all the curves for different B merge with the two- 
dimensional limiting case if S is sufficiently high. This is because A decreases as S 
increases and B/A must eventually become 9 1. In this limit, the viscous effects 
coming from channel wall are negligible compared to the viscous interaction between 
the fibres. In general, the larger the value of B the smaller the value of S a t  which 
K ,  approaches the two-dimensional result. 

4.4. The Brinkman approximation 

The periodic fibre array in figure 1 can also be viewed as a porous medium bounded 
by two parallel channel walls. The effect of the channel walls on the Darcy flow can 
be approximately taken into account using a Brinkman equation (Bird et al. 1960; 
Ethier & Kamm 1989) 

P VP = -- V+pVZV, 
K ,  

(39) 

which satisfies no-slip conditions a t  the top and bottom boundaries : 

V = O ,  Z = + B .  (40) 
If K,,  the Darcy permeability coefficient, is defined by its value for an infinite 
medium, (39) will reduce to Darcy's law in the dense fibre limit when K ,  is small and 
to the standard Stokes equation in the opposite limit when K ,  is large. In the present 
case K ,  is given by K ,  = rra2/Sf,', where fLD is obtained from the infinite two- 
dimensional solution in Sangani & Acrivos (1982). This solution for fiD is a 
complicated function of S. However, as shown in the log-log plot in figure 8, Sf lD is 
nearly a linear function of A and thus fkD is closely approximated by 

54.95 
f,'D F' 
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10-3 
S 

I 

FIGURE 9. A comparison between the drag coefficients obtained by the present solution (-), the 
interpolation approximation (---) and the Brinkman approximation eq. (45) (. . . . . ). The two- 
term asympt,otic solution of Lee (1969) (-. .-), and the two-dimensional solution of Sangani & 
Acrivos (1982) (---), are also shown in the figure. 

This formula is accurate to within 10% for 0.001 < S < 0.7. Using (411, we obtain 
the following approximation for K ,  : 

K ,  = (42) 

If (39) is cast in dimensionless form, one can readily show that the magnitude of 
the viscous-layer thickness adjacent to the channel walls is of the order KL. 
Therefore, for high fibre density, i.e. K$/H 4 O(1), the channel wall effect is small 
and the results of the Brinkman equation approach the two-dimensional limiting 
solution except for the thin viscous layers in which the flow adjusts to satisfy the no- 
slip condition (40). On the other hand, when S is small, i.e. K$/H % O(1), the porous 
material has little influence on the flow and the Brinkman equation will correctly 
predict the pure Poiseuille flow behaviour. Using the approximate expression for K ,  
in (42) one finds that K t / B  - A1.18s5/B. This relation confirms the results figure 6, 
which show that there is a transition from Hele-Shaw potential flow behaviour to 
viscous behaviour as A/B passes through unity. It is in the intermediate regime 
where K b / B  or A/B is of O( 1) that the Brinkman equation is of questionable validity. 

The solution to  (39) and (40) for the velocity profile in the channel is 

By averaging the velocity across the channel height, we can obtain an expression for 
the effective permeability, 

(44) 
Kp,eP1 = -,up v,” = K,(l- tanh (B’/K:))- 

dP/dx B / K L  

The drag coefficient fB derived from this Brinkman equation is given by 

713 

fB = 3(7 - tanh 7) 
where = (3f2,)i = B / K $ .  

(45) 
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The solutions for fB obtained from (45) are shown by the dotted curves in figure 
9. These results indicate that the Brinkman approximation does approach the two- 
dimensional limit when A/B < 1 and that curves with larger values of B will deviate 
from the two-dimensional solution at  larger values of A ,  or smaller values of S. The 
results in figure 9 show that when B is larger than 5, the Brinkman approximation 
is a remarkably good approximation for all values of S, whereas when B < O( 1) the 
approximation deteriorates rapidly for S in the intermediate range. At these values 
of B the microstructure between the fibres can no longer be adequately represented 
by a Brinkman-type continuum equation. However, as will be shown next, a highly 
accurate interpolation formula can be developed for this range of B where the 
Brinkman approach breaks down. 

4.5. An asymptotic interpolation formula for f 
The results in figure 9 indicate that f derived from Lee's (1969) two-term asymptotic 
solution and the two-dimensional solution provide good approximations for both 
A/B 9 1 and A/B < 1 respectively. This allows us to develop an accurate 
interpolation formula for the effective viscosity using a curve fit which asympto- 
tically approaches the limiting expressions of Lee and Sangani & Acrivos. In 
Lee's two-term asymptotic solution the constant b,  in (36) is given by 

where K ,  are modified Bessel functions of order n. The two-dimensional asymptotic 
expression is given by (38), where fiD is approximated by (41). These two asymptotic 
solutions provide the basis for developing a convenient interpolation formula for f 
which is valid for all values of S and B. Because there is no intersection between these 
two asymptotic solutions, the common interpolation formula 

f = (f,",+f,",)"" (47) 

cannot be applied directly. Here f3D represents Lee's asymptotic solution for A/B B 
1 and n is a free parameter that will be determined shortly. Since the solution given 
by (36) and (46) for f3= breaks down rapidly when A < 2B, f3, ,  is approximated by 
the tangent line a t  S = S,  for S > S,, where S,  is the solidity ratio when A = 2B. This 
modified expression for f3D for S > S, is given by 

(8-8,) 
) - 2 b 1  (1+b,SA)2  

Substituting (38) and (36) or (48) into (47) and requiring that the value off a t  the 
intersection point of fZD and f3D match the numerical solution exactly, we can obtain 
a formula for n for different aspect ratios B :  

n = B/(0.1918+0.3308B). (49) 
Some results of this interpolation approximation are plotted in figure 9. The 

formula is accurate to within 20% for all values of S when B > 0.5. 

5. Concluding comments 
As mentioned in the introduction, the motivation for this research derives from the 

study of the transcapillary exchange of water and hydrophilic solutes, where i t  has 
been hypothesized that cross-bridging proteoglycan fibres might exist throughout 
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A‘ (nm) 
FIGURE 10. Solutions for the hydraulic conductivity Lp for a channel filled with a square array of 
cross-bridging fibres and with no junction strand. The horizontal dashed line indicates the value 
of L p  for frog mesentery capillary measured by Clough & Michel (1988). 2B’ = 22 nm, L = 400 nm. 

the interendothelial clefts, Curry & Michel (1980). A new three-dimensional model 
has been proposed for capillary filtration through the clefts (channels) between the 
endothelial cells by Tsay et al. (1989). I n  this model the cleft consists of a channel 
with a junctional bar with periodically spaced missing proteins (pores) that separate 
two nearly uniform gap regions on the lumen and tissue fronts where the 
hypothesized cross-bridging fibre matrix is present. The results of this study can be 
applied to the model for the hydraulic resistance of the fibre matrix in the wide 
portions of the cleft on each side of the junction bar. Physiologists measure this 
resistance in terms of an hydraulic conductivity per em2 of endothelial surface L,. 
The hydraulic conductivity for a cleft without a junctional bar is related to K ,  by 
L ,  = K,(2B’Lj,/pL), where L,, is the t&al junction length per unit capillary surface 
area and L is the depth of the cleft. The cleft dimensions used in figure 10, 
L = 400 nm, B’ = 11 nm and L,, = 2000 cm/cm2, are based on the values for frog 
mesentery capillary measured by Clough & Michel (1988). The solid curve is for a 
cleft with slender cross-bridging proteoglycan fibres of 0.6 nm radius, the dotted 
curve is for cross-bridging proteins of 5 nm radius, and the dashed horizontal line 
shows the values of L, for frog mesentery capillary measured by Clough & Michel 
(1988). 

The results in figure 10 indicate that the measured value of L ,  for frog mesentery 
can be achieved by a cleft with no junctional bar and fibres of 0.6nm radius 
occupying approximately 2 YO of the cleft volume. The open gap A’ between adjacent 
fibres for this fibre density is 6.3 nm. Thus, for a cleft with most of its tight junction 
open (little or no junctional bar), the fibre matrix could possibly serve as the primary 
molecular sieve for the intermediate size solutes of less than 6 n m  diameter. The 
present results, however, represent the smallest fibre spacing possible since they 
neglect the resistance of the junction bar entirely. It is suggested in Tsay et al. (1989) 
that  the junction pores, if formed by missing junction proteins, would have just the 
right dimensions (approximately 5 4  nm radius) for the junction strand with its 
pores to serve as the molecular sieve. Widely spaced small gaps of this nature have 
been observed by Bundgaard (1984) in serial section electron microscopic recon- 
structions of the junction strands. The presence of a junction strand with this 
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ultrastructure greatly increases the hydraulic resistance of the cleft and would 
significantly increase the minimum fibre spacing required for a combined model of 
junction pores and fibres to correctly predict the measured value of L,. Further 
experiments are therefore required to determine whether the pores in the junction 
bar or the fibre matrix serves as the principal molecular filter. It has also been 
suggested that bridging proteins of 5 nm radius might provide the uniformity of gap 
height that is observed in the wide portion of the cleft of all endothelial cells. The 
dotted curve in figure 10 is the prediction for this hypothetical model. These 
molecules would have to have a minimum A‘ of 9 nm, or centre-to-centre spacing of 
19nm (S = 0.22), to account for the measured value of L,. While this protein 
spacing is highly unlikely, one could have widely spaced bridging proteins that have 
no significant effect on L,. A biological paper describing the complete model for the 
flow in the interendothelial cleft has been submitted elsewhere (Weinbaum, Tsay & 
Curry 1991). 

In  summary, we have developed in this study a highly accurate doubly infinite 
series solution for flow through a square array of cylindrical fibres confined between 
two parallel walls. The solution successfully describes the interaction for the fibre 
array wherein the flow ranges from the irrotational Hele-Shaw limit (B Q 1)  to the 
viscous two-dimensional limiting case (B % 1 ) .  A viscous layer with scale of order B 
is found on the fibre surface. The vertical velocity component is only significant 
within this viscous layer. When the viscous layers surrounding the fibres overlap, the 
drag coefficient of the fibrous bed increases dramatically. Our results show that 
instead of S and B, A/B is the best parameter to judge whether the fibre array can 
be described by a two-dimensional approximation. When A/B 9 1,  the fluid 
streamlines exhibit a potential flow behaviour, except in a thin region of O(B) around 
the fibre surfaces. In  contrast to classic Hele-Shaw flow it is not necessary for B Q 
1 for this potential outer flow to exist. Finally, the present study shows that the 
Brinkman equation provides a very good approximation when B > 5 but deteriorates 
rapidly for B < O(1). An alternative asymptotic interpolation formula which is 
accurate to within 20% for all values of S and B > 0.5 is also developed. 

The authors gratefully acknowledge the support of NSF grant CTS-8803116 and 
NIH grant HL- 19454. This research was performed in partial fulfilment of the 
requirements for the Ph.D. degree of R. Tsay from the City University of New York. 

Appendix 

written in the form 
Orthogonal expansions for the various functions of z appearing in (7)-( 10) can be 

(A 1)  
where An is given by (13) and 
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The expressions for om,, vmn and m,, appearing in (31) are given by the following: 

m 

V,,(r) = I ,  krn1 - b, r-zm + C A,, b p  r2,-’) + d [ c,, DKA,, 
P--l 

where 

K ’ = -  a m  

rn dr ’ 
I =- a m  

dr  
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